Electrochemical Reduction in Alkaline Electrolyte Removes CuS Phase to Form CuInS2-Based Solar Cells
نویسندگان
چکیده
منابع مشابه
Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells
Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the...
متن کاملCharge carrier loss mechanisms in CuInS2/ZnO nanocrystal solar cells.
Heterojunction solar cells based on colloidal nanocrystals (NCs) have shown remarkable improvements in performance in the last decade, but this progress is limited to merely two materials, PbS and PbSe. However, solar cells based on other material systems such as copper-based compounds show lower power conversion efficiencies and much less effort has been made to develop a better understanding ...
متن کاملSolid-phase electrochemical reduction of graphene oxide films in alkaline solution
Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyani...
متن کاملButyronitrile-based electrolyte for dye-sensitized solar cells.
We elaborated a new electrolyte composition, based on butyronitrile solvent, that exhibits low volatility for use in dye-sensitized solar cells. The strong point of this new class of electrolyte is that it combines high efficiency and excellent stability properties, while having all the physical characteristics needed to pass the IEC 61646 stability test protocol. In this work, we also reveal a...
متن کاملOptimization of Annealing Process for Totally Printable High-current Superstrate CuInS2 Thin-Film Solar Cells
Planar superstrate CuInS2 (CIS) solar cell devices are fabricated using totally solution-processed deposition methods. A titanium dioxide blocking layer and an In2S3 buffer layer are deposited by the spray pyrolysis method. A CIS2 absorber layer is deposited by the spin coating method using CIS ink prepared by a 1-butylamine solvent-based solution at room temperature. To obtain optimum annealin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MRS Bulletin
سال: 2000
ISSN: 0883-7694,1938-1425
DOI: 10.1557/mrs2000.160